Smart Algorithms to Control a Variable Speed Wind Turbine

نویسندگان

  • Nabil Farhane
  • Ismail Boumhidi
  • Jaouad Boumhidi
چکیده

In this paper, a robust adaptive fuzzy neural network sliding mode (AFNNSM) control design is proposed to maximize the captured energy for a variable speed wind turbine and to minimize the efforts of the drive shaft. Fuzzy neural network (FNN) is used to improve the mathematical system model, by the prediction of model unknown function, which is used by the Sliding mode control approach (SMC) and enables a lower switching gain to be used despite the presence of large uncertainties. As a result, the used robust control action did not exhibit any chattering behavior. This FNN is trained on-line using the backpropagation algorithm (BP). The particle swarm optimization (PSO) algorithm is used in this study to optimize the learning rate of BP algorithm in order to improve the network performance in term of the speed of convergence. The stability is shown by the Lyapunov theory and the trajectory tracking errors converge to zero without any oscillatory behavior. Simulations illustrate the effectiveness of the designed method. Smart Algorithms to Control a Variable Speed Wind Turbine

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

This paper presents modeling, simulation and control of matrix converter (MC) for variable speed wind turbine (VSWT) system including permanent magnet synchronous generator (PMSG). At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independen...

متن کامل

Improvement Performances of Active and Reactive Power Control Applied to DFIG for Variable Speed Wind Turbine Using Sliding Mode Control and FOC

This paper deals with the Active and Reactive Power control of double-fed induction generator (DFIG) for variable speed wind turbine. For controlling separately the active and the reactive power generated by a DFIG, field oriented control (FOC) and indirect sliding mode control (ISMC) are presented. These non linear controls are compared on the basis of topology, cost, efficiency. The main cont...

متن کامل

Designing a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed

One of the main tasks of the control systems in the wind turbines is to maintain the power of the wind when its wind speed proceed its nominal value. Because the failure to maintain the power in its nominal value in the region of the turbine curve damages the turbine and increases the mechanical stress. This object is obtained by controlling the pitch angle in the third region of the turbine cu...

متن کامل

Optimal Torque Control of PMSG-based Stand-Alone Wind Turbine with Energy Storage System

In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...

متن کامل

Baseline Results and Future Plans for the NREL Controls Advanced Research Turbine: Preprint

The National Renewable Energy Laboratory (NREL) has commissioned a highly modified Westinghouse 600 kW wind turbine as its Controls Advanced Research Turbine (CART). The capabilities of the original turbine have been increased through the installation of a high-speed data-acquisition and control system, a widebandwidth variable-speed generation system, and a high-speed independent blade pitch s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJIMAI

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017